Jump to content

The Python Automation System That Quietly Earns Me Money Every Month

From JOHNWICK

How I Used Scripts, APIs, and AI to Build a 24/7 Digital Income Stream

1. How I Accidentally Built a Python Money Machine

This all started with one lazy thought: “What if I could get Python to do my work while I sleep?” Fast-forward a few months, and I had an automated system pulling data, generating AI content, and sending it to paying clients without me lifting a finger.

2. The Core Stack I Used

Before writing a single line of automation code, I set up my environment:

mkdir python-automation
cd python-automation
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install requests beautifulsoup4 pandas schedule openai flask python-dotenv
* 		Requests — API calls
* 		BeautifulSoup4 — Web scraping
* 		Pandas — Data handling
* 		Schedule — Task automation
* 		OpenAI — AI text generation
* 		Flask — Turn automation into a web service
* 		Dotenv — Keep secrets safe

3. Web Scraping for Market Data

I used BeautifulSoup to grab market prices from websites and feed them into my system.

import requests
from bs4 import BeautifulSoup

url = "https://www.coindesk.com/"
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
headlines = [h.get_text() for h in soup.select('h4')]
print(headlines)

4. Pulling Live Data from APIs

Scraping is cool, but APIs are cleaner and faster.

import requests

btc = requests.get("https://api.coindesk.com/v1/bpi/currentprice.json").json()
print(f"BTC Price: ${btc['bpi']['USD']['rate']}")

5. Scheduling Everything with Schedule

This made my Python bot run exactly when I wanted.

import schedule
import time

def job():
    print("Running automation job...")

schedule.every().day.at("09:00").do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

6. Adding AI for Content Creation

I connected my pipeline to OpenAI so it could automatically create human-like reports.

import os
from openai import OpenAI
from dotenv import load_dotenv

load_dotenv()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

response = client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Summarize the latest Bitcoin news in 3 sentences"}]
)

print(response.choices[0].message.content)

7. Turning Scripts into a Web Service

Clients could trigger automations anytime using a simple Flask API.

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/generate-report')
def generate_report():
    return jsonify({"status": "Report generated successfully."})

if __name__ == '__main__':
    app.run(port=5000)

8. Packaging Everything into a Client Dashboard

With Streamlit, I built a no-fuss interface for non-technical users to view AI reports and trigger tasks.

pip install streamlit
import streamlit as st

st.title("AI Automation Dashboard")
if st.button("Run Report"):
    st.success("Report generated!")

9. Adding a Payment Gateway

I integrated Stripe so users had to pay before accessing premium automation features.

pip install stripe
import stripe
stripe.api_key = "sk_test_..."

payment_intent = stripe.PaymentIntent.create(
    amount=5000,
    currency="usd",
    payment_method_types=["card"]
)

10. Deploying to the Cloud

I pushed the entire system to Render for web hosting and set up a free tier PostgreSQL database for storing customer requests and payments.

11. Scaling with Background Workers

For heavy jobs, I offloaded tasks to Celery + Redis, so my server didn’t choke when multiple clients ran scripts at once.